Priority Research Direction: I/O frameworks for scalable performance for I/O pipelines.

Key emerging challenges

- The growing gap of data complexity (size, features, sources) is growing exponentially
- •File systems are growing much slower than hardware
- •User access patterns require new ways to increase concurrency when reading and writing to file systems
- •Need to combine data movement, I/O, and in-transit processing

Potential impact on software/systems

- •OLCF supports ADIOS, and the number of customers are continually growing
- Project is used in ASCR-co-design, Exascale, NASA, NSF
- •Integrating in many of the analysis, visualization frameworks (VTK, Visit, Paraview, Matlab) for sustainability

Summary of research direction

- •I/O frameworks need to provide portable, fast, scalable, east-to-use, metadata rich output/streams with a simple API
- •Software needs to be layered for abstractions of the API from the implementation for data movement/IO

Potential impact on science communities or DOE capabilities

•By abstracting the API away from the implementation, we have created a HPC Service Oriented Architecture for coupling services efficiently together.

•Many codes could not run without ADIOS on the

OLCF.

